Turning definitions

$n = \mathsf{RPM}$

(revolutions per minute)

- *v*_c = Cutting speed (meter per minute)
- **D_c = Workpiece diameter** (millimeter)
- a_p = Depth of cut
 (millimeter)

Definition of terms

- v_c = Cutting speed
 (m/min.)
- a_p = Depth of cut
 (mm)
- n = Spindle speed
 (rpm)
- F_n = Feed (mm/rev.)

Cutting data calculation

Circumference = π x diameter π = 3.14 (approx. = 3)

 D_2 100 mm diameter = 300 mm (3 x 100) D_1 50 mm diameter = 150 mm (3 x 50)

Calculating cutting data

RPM (*n*) from cutting speed (v_c)

Given $v_c = 400 \text{ m/min}$ $D_c = 100 \text{ mm}$

$$n = \frac{v_{\rm c} \times 1000}{\pi \times \rm Dc}$$

$$n = \frac{400 \times 1000}{3.14 \times 100}$$

= 1275 rev/min

How do cutting data parameters effect tool life?

Effect on tool life

a_p -little effect on tool life

Utilize the potential of

- **a**_p to reduce number or cuts
- f_n for shorter cutting time
- $v_{\rm c}~$ for best tool life

- f_n -less effect on tool life than v_c
- *v*_c -large effect on tool life.
 Adjust *v*_c for best economy

Insert shape

Large insert shape

- Stronger cutting edge
- Higher feed rates
- Increase cutting forces
- Increase vibration

Small insert shape

- Increase accessibility
- Decrease vibration
- Decrease cutting forces
- Weaker cutting edge

Effect of nose radius

Small nose radius

- Ideal for small cutting depth
- Reduces vibration
- Insert breakage

Large nose radius

- Heavy feed rates
- Large depths of cut
- Strong edge security
- Increased radial pressures

Note: As a general rule of thumb, the depth of cut should be no less than 2/3 of the nose radius.

Surface finish: negative T-Max® P inserts

	Surface finish, μm		Insert nose radius, mm			
	Ra	Rt	0.4	0.8	1.2	
$R_{max} = f_{n^2} \times 1000$ 8 x r _e	0.6	1.6	0.07	0.10	0.12	
	1.6	4.0	0.11	0.15	0.19	
	3.2	10.0	0.17	0.24	0.29	
	6.3	16.0	0.22	0.30	0.37	

In a turning operation, surface finish is a function of nose radius and feed per revolution

Surface finish: positive CoroTurn[®] 107 inserts

	Surface finish, μm		Insert nose radius, mm				
	Ra	Rt	0.2	0.4	0.8	1.2	1.6
$P = f^2 \times 1000$	0.6	1.6	0.05	0.07	0.10	0.12	0.14
	1.6	4.0	0.08	0.11	0.15	0.19	0.22
$max = I_n^2 \times 1000$	3.2	10.0	0.10	0.17	0.24	0.29	0.34
8 x r _ε	6.3	16.0	0.13	0.22	0.30	0.37	0.43

In a turning operation, surface finish is a function of nose radius and feed per revolution